Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Emerg Microbes Infect ; 10(1): 2173-2182, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1493581

ABSTRACT

The continuing emergence of SARS-CoV-2 variants calls for regular assessment to identify differences in viral replication, shedding and associated disease. In this study, we compared African green monkeys infected intranasally with either the UK B.1.1.7 (Alpha) variant or its contemporary D614G progenitor. Both variants caused mild respiratory disease with no significant differences in clinical presentation. Significantly higher levels of viral RNA and infectious virus were found in upper and lower respiratory tract samples and tissues from B.1.1.7 infected animals. Interestingly, D614G infected animals showed significantly higher levels of viral RNA and infectious virus in rectal swabs and gastrointestinal tissues. Our results indicate that B.1.1.7 infection in African green monkeys is associated with increased respiratory replication and shedding but no disease enhancement similar to human B.1.1.7 cases.


Subject(s)
COVID-19/virology , Chlorocebus aethiops/virology , Respiratory System/virology , Virus Replication , Virus Shedding , Administration, Intranasal , Animals , COVID-19/epidemiology , Gastrointestinal Tract/virology , Host Specificity , Polymorphism, Single Nucleotide , RNA, Viral/isolation & purification , Random Allocation , Rectum/virology , United Kingdom/epidemiology , Vero Cells , Viral Load
2.
Mol Cells ; 44(6): 377-383, 2021 Jun 30.
Article in English | MEDLINE | ID: covidwho-1289259

ABSTRACT

Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is a novel virus that causes coronavirus disease 2019 (COVID-19). To understand the identity, functional characteristics and therapeutic targets of the virus and the diseases, appropriate infection models that recapitulate the in vivo pathophysiology of the viral infection are necessary. This article reviews the various infection models, including Vero cells, human cell lines, organoids, and animal models, and discusses their advantages and disadvantages. This knowledge will be helpful for establishing an efficient system for defense against emerging infectious diseases.


Subject(s)
COVID-19/virology , Models, Theoretical , Organoids/virology , SARS-CoV-2/pathogenicity , Animals , COVID-19/immunology , COVID-19/pathology , Cats , Cell Line, Tumor , Chickens/virology , Chlorocebus aethiops/virology , Cricetinae , Dogs , Ferrets/virology , Humans , Mice , Organoids/immunology , Organoids/pathology , Rabbits , SARS-CoV-2/growth & development , Swine/virology , Vero Cells
3.
Am J Pathol ; 191(2): 274-282, 2021 02.
Article in English | MEDLINE | ID: covidwho-1064773

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces a wide range of disease severity, ranging from asymptomatic infection to a life-threating illness, particularly in the elderly population and individuals with comorbid conditions. Among individuals with serious coronavirus 2019 (COVID-19) disease, acute respiratory distress syndrome (ARDS) is a common and often fatal presentation. Animal models of SARS-CoV-2 infection that manifest severe disease are needed to investigate the pathogenesis of COVID-19-induced ARDS and evaluate therapeutic strategies. We report two cases of ARDS in two aged African green monkeys (AGMs) infected with SARS-CoV-2 that had pathological lesions and disease similar to severe COVID-19 in humans. We also report a comparatively mild COVID-19 phenotype characterized by minor clinical, radiographic, and histopathologic changes in the two surviving, aged AGMs and four rhesus macaques (RMs) infected with SARS-CoV-2. Notable increases in circulating cytokines were observed in three of four infected, aged AGMs but not in infected RMs. All the AGMs had increased levels of plasma IL-6 compared with baseline, a predictive marker and presumptive therapeutic target in humans infected with SARS-CoV-2. Together, our results indicate that both RMs and AGMs are capable of modeling SARS-CoV-2 infection and suggest that aged AGMs may be useful for modeling severe disease manifestations, including ARDS.


Subject(s)
COVID-19/etiology , Lung/virology , SARS-CoV-2/pathogenicity , Aging , Animals , Chlorocebus aethiops/virology , Coronavirus Infections/drug therapy , Cytokines/metabolism , Humans , Lung/pathology , Macaca mulatta/virology , Viral Load/methods
4.
PLoS Pathog ; 17(1): e1009212, 2021 01.
Article in English | MEDLINE | ID: covidwho-1034957

ABSTRACT

Hydroxychloroquine, used to treat malaria and some autoimmune disorders, potently inhibits viral infection of SARS coronavirus (SARS-CoV-1) and SARS-CoV-2 in cell-culture studies. However, human clinical trials of hydroxychloroquine failed to establish its usefulness as treatment for COVID-19. This compound is known to interfere with endosomal acidification necessary to the proteolytic activity of cathepsins. Following receptor binding and endocytosis, cathepsin L can cleave the SARS-CoV-1 and SARS-CoV-2 spike (S) proteins, thereby activating membrane fusion for cell entry. The plasma membrane-associated protease TMPRSS2 can similarly cleave these S proteins and activate viral entry at the cell surface. Here we show that the SARS-CoV-2 entry process is more dependent than that of SARS-CoV-1 on TMPRSS2 expression. This difference can be reversed when the furin-cleavage site of the SARS-CoV-2 S protein is ablated or when it is introduced into the SARS-CoV-1 S protein. We also show that hydroxychloroquine efficiently blocks viral entry mediated by cathepsin L, but not by TMPRSS2, and that a combination of hydroxychloroquine and a clinically-tested TMPRSS2 inhibitor prevents SARS-CoV-2 infection more potently than either drug alone. These studies identify functional differences between SARS-CoV-1 and -2 entry processes, and provide a mechanistic explanation for the limited in vivo utility of hydroxychloroquine as a treatment for COVID-19.


Subject(s)
COVID-19/prevention & control , Hydroxychloroquine/pharmacology , SARS-CoV-2/drug effects , Serine Endopeptidases/drug effects , Spike Glycoprotein, Coronavirus/drug effects , Virus Internalization/drug effects , Animals , Chlorocebus aethiops/virology , Humans , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells/virology , COVID-19 Drug Treatment
5.
Emerg Infect Dis ; 26(12): 2835-2843, 2020 12.
Article in English | MEDLINE | ID: covidwho-707380

ABSTRACT

Emerging coronaviruses are a global public health threat because of the potential for person-to-person transmission and high mortality rates. Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in 2012, causing lethal respiratory disease in ¼35% of cases. Primate models of coronavirus disease are needed to support development of therapeutics, but few models exist that recapitulate severe disease. For initial development of a MERS-CoV primate model, 12 African green monkeys were exposed to 103, 104, or 105 PFU target doses of aerosolized MERS-CoV. We observed a dose-dependent increase of respiratory disease signs, although all 12 monkeys survived for the 28-day duration of the study. This study describes dose-dependent effects of MERS-CoV infection of primates and uses a route of infection with potential relevance to MERS-CoV transmission. Aerosol exposure of African green monkeys might provide a platform approach for the development of primate models of novel coronavirus diseases.


Subject(s)
Communicable Diseases, Emerging/virology , Coronavirus Infections/virology , Middle East Respiratory Syndrome Coronavirus/physiology , Animals , COVID-19 , Chlorocebus aethiops/virology , Coronavirus Infections/pathology , Disease Models, Animal , Female , Humans , Male , Middle East Respiratory Syndrome Coronavirus/pathogenicity , SARS-CoV-2/pathogenicity
6.
Vet Res Commun ; 44(3-4): 101-110, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-639440

ABSTRACT

The outbreak of the SARS-CoV-2 in mainland China with subsequent human to human transmission worldwide had taken up the shape of a devastating pandemic. The ability of the virus to infect multiple species other than humans has currently been reported in experimental conditions. Non-human primates, felines, ferrets, rodents and host of other animals could previously be infected in experimental conditions with SARS-CoV and recently with SARS-CoV-2, both virus using Angiotensin-converting-enzyme 2 receptor for cellular entry. The variations in sequence homology of ACE2 receptor across species is identified as one of the factors determining virulence and pathogenicity in animals. The infection in experimental animals with SARS-CoV or SARS-CoV-2 on most occasions are asymptomatic, however, the virus could multiply within the respiratory tract and extra-pulmonary organs in most of the species. Here, we discuss about the pathogenicity, transmission, variations in angiotensin-converting-enzyme 2 receptor-binding across species and host pathogen interactions of SARS and SARS-CoV-2 in laboratory animals used in research.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/veterinary , Host-Pathogen Interactions , Pandemics/veterinary , Pneumonia, Viral/veterinary , Severe Acute Respiratory Syndrome/veterinary , Severe acute respiratory syndrome-related coronavirus/pathogenicity , Animals , COVID-19 , Callithrix/virology , Cats/virology , Chickens/virology , Chiroptera/virology , Chlorocebus aethiops/virology , Coronavirus Infections/transmission , Coronavirus Infections/virology , Cricetinae/virology , Ferrets/virology , Macaca fascicularis/virology , Macaca mulatta/virology , Mice , Mice, Inbred Strains/virology , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Rodentia/virology , SARS-CoV-2 , Severe Acute Respiratory Syndrome/transmission , Severe Acute Respiratory Syndrome/virology , Swine/virology
SELECTION OF CITATIONS
SEARCH DETAIL